PRIMARY-PRODUCTIVITY GRADIENTS AND SHORT-TERM POPULATION DYNAMICS IN OPEN SYSTEMS

1997 ◽  
Vol 67 (4) ◽  
pp. 535-553 ◽  
Author(s):  
R. M. Nisbet ◽  
S. Diehl ◽  
W. G. Wilson ◽  
S. D. Cooper ◽  
D. D. Donalson ◽  
...  
2015 ◽  
Vol 29 (8) ◽  
pp. 1145-1164 ◽  
Author(s):  
Samuel T. Wilson ◽  
Benedetto Barone ◽  
Francois Ascani ◽  
Robert R. Bidigare ◽  
Matthew J. Church ◽  
...  

2015 ◽  
Vol 63 (3) ◽  
pp. 229-238
Author(s):  
Ana Paula Freitas dos Santos ◽  
Sabrina Morilhas Simões ◽  
Gabriel Lucas Bochini ◽  
Cinthia Helena Costa ◽  
Rogerio Caetano da Costa

AbstractThe population dynamics of Acetes americanus was investigated, focusing on the sex ratio, individual growth, longevity, recruitment and relationship between abundance and environmental factors in the region of Macaé, strongly influenced by coastal upwelling. Otter trawl net samplings were performed from July 2010 to June 2011 at two points (5 m and 15 m). Nearly 19,500 specimens, predominantly females (77.15%), were captured. Their sizes, larger than that of males, indicated sexual dimorphism. Shrimps at lower latitudes present larger sizes and longer longevity than those from higher latitudes. This difference is probably due to low temperatures and high primary productivity. Though no statistical correlation was found between abundance and environmental factors, the species was more abundant in temperatures closer to 20.0º C and in months with high chlorophyll-a levels. Due to the peculiar characteristics of this region, A. americanusshowed greater differences in size and longevity than individuals sampled in other studies undertaken in the continental shelf of Southeast Brazil.


2007 ◽  
Vol 151 (6) ◽  
pp. 2077-2090 ◽  
Author(s):  
F. Rossi ◽  
R. M. Forster ◽  
F. Montserrat ◽  
M. Ponti ◽  
A. Terlizzi ◽  
...  

2008 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
T.R. Cavagnaro ◽  
L.E. Jackson ◽  
K. Hristova ◽  
K.M. Scow

Author(s):  
Xulu Sun ◽  
Daniel J. O’Shea ◽  
Matthew D. Golub ◽  
Eric M. Trautmann ◽  
Saurabh Vyas ◽  
...  

AbstractAnimals have a remarkable capacity to learn new motor skills, but it remains an open question as to how learning changes neural population dynamics underlying movement1. Specifically, we asked whether changes in neural population dynamics relate purely to newly learned movements or if additional patterns are generated that facilitate learning without matching motor output. We trained rhesus monkeys to learn a curl force field2 task that elicited new arm-movement kinetics for some but not all reach directions3,4. We found that along certain neural dimensions, preparatory activity in motor cortex reassociated existing activity patterns with new movements. These systematic changes were observed only for learning-altered reaches. Surprisingly, we also found prominent shifts of preparatory activity along a nearly orthogonal neural dimension. These changes in preparatory activity were observed uniformly for all reaches including those unaltered by learning. This uniform shift during learning implies formation of new neural activity patterns, which was not observed in other short-term learning contexts5–8. During a washout period when the curl field was removed, movement kinetics gradually reverted, but the learning-induced uniform shift of preparatory activity persisted and a second, orthogonal uniform shift occurred. This persistent shift may retain a motor memory of the learned field9–11, consistent with faster relearning of the same curl field observed behaviorally and neurally. When multiple different curl fields were learned sequentially, we found distinct uniform shifts, each reflecting the identity of the field applied and potentially separating the associated motor memories12,13. The neural geometry of these shifts in preparatory activity could serve to organize skill-specific changes in movement production, facilitating the acquisition and retention of a broad motor repertoire.


Sign in / Sign up

Export Citation Format

Share Document